A Mechanistic Explanation Linking Adaptive Mutation, Niche Change, and Fitness Advantage for the Wrinkly Spreader

نویسنده

  • Andrew J. Spiers
چکیده

Experimental evolution studies have investigated adaptive radiation in static liquid microcosms using the environmental bacterium Pseudomonas fluorescens SBW25. In evolving populations a novel adaptive mutant known as the Wrinkly Spreader arises within days having significant fitness advantage over the ancestral strain. A molecular investigation of the Wrinkly Spreader has provided a mechanistic explanation linking mutation with fitness improvement through the production of a cellulose-based biofilm at the air-liquid interface. Colonisation of this niche provides greater access to oxygen, allowing faster growth than that possible for non-biofilm-forming competitors located in the lower anoxic region of the microcosm. Cellulose is probably normally used for attachment to plant and soil aggregate surfaces and to provide protection in dehydrating conditions. However, the evolutionary innovation of the Wrinkly Spreader in static microcosms is the use of cellulose as the matrix of a robust biofilm, and is achieved through mutations that deregulate multiple diguanylate cyclases leading to the over-production of cyclic-di-GMP and the stimulation of cellulose expression. The mechanistic explanation of the Wrinkly Spreader success is an exemplar of the modern evolutionary synthesis, linking molecular biology with evolutionary ecology, and provides an insight into the phenomenal ability of bacteria to adapt to novel environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness.

A central feature of all adaptive radiations is morphological divergence, but the phenotypic innovations that are responsible are rarely known. When selected in a spatially structured environment, populations of the bacterium Pseudomonas fluorescens rapidly diverge. Among the divergent morphs is a mutant type termed "wrinkly spreader" (WS) that colonizes a new niche through the formation of sel...

متن کامل

Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation.

Pseudomonas fluorescens is a model for the study of adaptive radiation. When propagated in a spatially structured environment, the bacterium rapidly diversifies into a range of niche specialist genotypes. Here we present a genetic dissection and phenotypic characterization of the fuzzy spreader (FS) morphotype-a type that arises repeatedly during the course of the P. fluorescens radiation and a...

متن کامل

Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity.

Understanding the connections among genotype, phenotype, and fitness through evolutionary time is a central goal of evolutionary genetics. Wrinkly spreader (WS) genotypes evolve repeatedly in model Pseudomonas populations and show substantial morphological and fitness differences. Previous work identified genes contributing to the evolutionary success of WS, in particular the di-guanylate cycla...

متن کامل

Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype.

Wrinkly spreader (WS) genotypes evolve repeatedly in model Pseudomonas populations undergoing adaptive radiation. Previous work identified genes contributing to the evolutionary success of WS. Here we scrutinize the GGDEF response regulator protein WspR and show that it is both necessary and sufficient for WS. Activation of WspR occurs by phosphorylation and different levels of activation gener...

متن کامل

Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens

7 8 9 3 ABSTRACT 1 Pseudomonas fluorescens is a model for the study of adaptive radiation. When propagated in a 2 spatially structured environment the bacterium rapidly diversifies into a range of niche specialist 3 genotypes. Here we present a genetic dissection and phenotypic characterization of the " fuzzy 4 spreader " (FS) morphotype — a type that arises repeatedly during the course of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014